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Open waveguides are widely used in modern photonic devices, such as microstructured fiber filters and sensors.
Their absorption and transmission spectra are the most important properties in determining the overall perfor-
mance of the photonic devices. The imaginary parts of their eigenvalues have been commonly used to calculate the
absorption and consequently the transmission spectra. Here we show that this formulism is generally incorrect
and not consistent with the simulation results obtained by the beam propagation method. We revisit the
fundamental theory for the absorption of open waveguides and present a general formulism. We found that
parity-time-symmetry transitions, which have been conventionally ignored, play a critical role in the properties
of the coupled waveguide. The absorption and transmission are highly dependent on the physical length of the
system. On the basis of our findings, optimization criteria for designing photonic sensors and filters are
presented. © 2018 Chinese Laser Press

https://doi.org/10.1364/PRJ.6.001003

1. INTRODUCTION

Many photonic crystal fiber (PCF) devices, such as PCF filters
[1,2] and sensors [3–5], utilize the coupling between the
dominant core and cladding eigenmodes to produce the desired
transmission resonance. In these devices, the refractive indices
(RIs) of the eigenmodes and the dispersion can be precisely
controlled by manipulating their geometrical structures. As a
result, the resonance wavelength is tunable and has a narrow
bandwidth, which is desirable for designing an optical device.

Conventionally, the absorption spectrum of a PCF is
calculated by Beer’s Law using the imaginary part of its eigen-
mode’s RI as the absorption coefficient [6–9]. In this formu-
lism, the dominant core eigenmode and dominant cladding
eigenmodes are decoupled because of symmetry protection
[10]. The symmetry protection originates from the orthogonal-
ity of the eigenmodes of a Hermitian Hamiltonian. However,
the assumption that these two eigenmodes are decoupled is not
generally correct for a non-Hermitian Hamiltonian [11]. When
these two eigenmodes are coupled, energy transfer between
these two modes occurs. In this case, the absorption can no
longer be described by the simple exponential decay (Beer’s
Law) because of the interference between these two eigen-
modes. As described below, our study shows that Beer’s Law
is not consistent with the simulation results obtained by the
beam propagation method (BPM).

In the current study, we develop a formulism to calculate
the absorption and transmission spectra for a non-Hermitian

Hamiltonian of an open optical system. The parity-time
(PT) symmetry of the system plays a critical role in the
aforementioned interference between the eigenmodes.
Interestingly, we found that the PT phase transition depends
on both the waveguide absorption and the input wavelength.
Consequently, the absorption and transmission may exhibit
dramatic changes, instead of a mono-exponential decay or gain
when light propagates along the waveguide. The current study
shows that adjusting the length of a waveguide is also critical for
optimizing its absorption and transmission properties. On the
basis of our formulism, several optimization criteria for design-
ing photonic crystal sensors and filters are presented. In
addition, we show that an increase in the imaginary part of the
eigenmode is a sufficient condition, not a necessary condition,
for an increased absorption.

2. NON-HERMITIAN COUPLED WAVEGUIDES

For simplicity, a PCF [Fig. 1(a)] with coupled core and clad-
ding modes [Fig. 1(b)] can be mathematically represented by a
two-core fiber [Fig. 1(c)] with two coupled modes, as shown in
Fig. 1(d). The Hamiltonian of the system or any coupled
waveguides can be written as (ℏ � 1)

Ĥ � ωn1a†a� ωn2b†b� g�a†b� b†a�, (1)

where ω is the angular frequency, ni are the complex mode RIs,
a and b are the annihilation operators for the core and cladding
modes, respectively, a† and b† are the creation operators for the
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core and cladding modes, respectively, and g describes the
effective evanescent coupling. The Heisenberg equation of
motion _ρ � 1

iℏ �ρ,H � for these two annihilation operators
can be written as �

_a
_b

�
� −iωM

�
a
b

�
, (2)

with

M �
�
n1 G12

G21 n2

�
, (3)

and G12 � G21 � g∕ω.
Conventionally, the off-diagonal elements (G12 and G21)

are treated as either real numbers [9] or conjugated complex
numbers [6]. Both cases lead to a spontaneous PT-symmetry
breaking [8]. In general, the coupling coefficients are defined
by G12 ≡ 1

4

R
E�
1n

2
1E2dxdy and G21 ≡ 1

4

R
E�
2n

2
2E1dxdy, where

Ei denotes the electric fields in the ith core. At a given wave-
length, the spontaneous PT-symmetry-breaking phase transi-
tion takes place when the medium loss is negligible (ni are
real numbers). In this case, G12G�

21 is also a real number.
When ni are complex numbers, G12G�

21 is also a complex num-
ber; therefore, an explicit PT-symmetry-breaking phase transi-
tion takes place. For simplicity, we consider G12G�

21 ≡ G2 in
Eq. (3), with G being a complex number. As described later,
this is consistent with the simulation results obtained by the
finite element method (FEM).

To compare the transmission spectrum with the imaginary
part of the eigenvalues for the eigenmodes (supermodes),
we decompose the non-Hermitian matrix M by using the
biorthogonal eigenstates [12]:

M � PΛP−1, (4)

where Λ �
h n� 0
0 n−

i
and P �

h
cos θ sin θ
sin θ −cos θ

i
, with

n	 � ne 	 σ, tan θ � −nd�σ
G , ne � n1�n2

2
, nd � n1−n2

2
, and

σ � G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ndG �2 � 1

q
. The annihilation operator can be

calculated by integrating Eq. (2) over time t :

�
a�t�
b�t�

�
� −K

�
a�0�
b�0�

�
, (5)

where K � PT diag�exp�iωn�t�, exp�iωn−t��P with PTP �
δ. The transmitted light intensity is given by

I a � ha†ai and I b � hb†bi: (6)

Here, I a and Ib represent the intensity of the core and cladding
modes, respectively. The following discussion focuses on the
absorption and transmission properties of the core mode with
a�0� � 1 and b�0� � 0, which is relevant to practical
applications.

Figure 2 (solid lines) shows the calculated real and imaginary
parts of the eigenmode RI (n� and n−) at 1.55 μm. In this
calculation, we assumed that the real part of the RI for
core 1 n1R is 1.45, and core 2 has a dispersion n2R �
1.574 − 8 × 104 × λ, with n2R � 1.45 at 1.55 μm. It shows a
second-order phase transition and a period-halving bifurcation
near Im�nd �∕jGj � 	1. We used a two-core single-mode
waveguide in the calculation; therefore, the RIs of the core
and cladding modes were approximated using the RIs of the
media. Practically, the mode RIs can be modified by changing
the structure of the photonic crystal [13,14]. The medium loss
in core 1 was set at n1I � 10−6, and we changed the medium
loss in core 2 to produce the phase transition. With the
first-order Markov approximation [15], it was assumed that
the coupling coefficient G � 10−4–10−6 − η × �n2I − 10−6�i.
η � 10−2 was used in the calculation to explain the phase tran-
sition at the phase matching point (n1R � n2R at 1.55 μm)
originated from the explicit PT-symmetry breaking.

Simulations using the FEM were carried out to verify that
the non-Hermitian Hamiltonian of the coupled optical system
possesses an explicit PT-symmetry breaking (dashed lines in
Fig. 2), instead of a spontaneous PT-symmetry breaking. All
parameters used in the FEM were identical to those used in
the quantum mechanical calculation described above. We em-
bedded the fiber cores into silicon (RISiO2 � 1.444) with a core
pitch of 12 μm. Figure 2 shows that the simulated imaginary

Fig. 1. (a) Representative PCF structure and (b) its dominant core
and cladding eigenmodes. (c) Equivalent two-core fiber and (d) its
eigenmodes.

Fig. 2. (a) Real and (b) imaginary parts of n� and n− as functions
of Im�nd �∕jGj obtained from the theory (solid lines) and the FEM
simulation (dashed lines).

1004 Vol. 6, No. 11 / November 2018 / Photonics Research Research Article



parts of the eigenmode RI n	 have a second-order phase tran-
sition, which confirms that it has an explicit PT-symmetry
breaking, instead of a spontaneous PT-symmetry breaking.

Conventionally, the imaginary part of the eigenvalue is used
to calculate the system’s absorption coefficient α using [1,5]

α � 20

ln�10� ×
2π

λ
× Im�n	�: (7)

Figure 3 shows the calculated imaginary part of the eigenvalue
using Eq. (7) with Im�nd �∕jGj � 	0.25, 	1, and 	1.5,
respectively. Im�n	 − n1�∕jGj is not single-valued as this is a
characteristic of PT-symmetry breaking [6]. The minimum
value of Im�n	 − n1�∕jGj is used to calculate the absorption
[1–4,9] because light always propagates via a mode with a lower
loss rather than a higher one. Im�nd �∕jGj � 	1 describes the
exceptional point of the coupling phase transition [16,17].
When Im�nd �∕jGj increases from 0.25 [Fig. 3(a)] to 1
[Fig. 3(b)], the absorption of the waveguide increases from
∼10 to ∼36 dB∕cm at 1.55 μm; consequently, the transmis-
sion decreases. When Im�nd �∕jGj > 1, the dispersion curves
become discontinuous at 1.55 μm, which indicates a first-order
phase transition. The discontinuity occurs because λ �
1.55 μm is an algebraic branch point for Im�n	 − n1�∕jGj
[18]. As a result, Im�nd �∕jGj > 1 produces a smaller peak
absorption value of ∼15 dB∕cm [Fig. 3(c)] compared to
Im�nd �∕jGj � 1 [Fig. 3(b)]. Similar processes are obtained
when the value of Im�nd �∕jGj increases from −1.5 to −0.25
(solid curves in Fig. 3). In this formulism, the transmitted light
experiences a constant adsorption coefficient and the intensity
exhibits an exponential decay, which is consistent with Beer’s
Law [1,5,9]. The transmission spectrum maintains the same
lineshape when the light propagates along the waveguide.

Figure 4 compares the transmission spectra obtained by the
conventional formulism [Eq. (7)], the proposed quantum for-
mulism [Eq. (6)], and the BPM simulations. The conventional
formulism [Fig. 4(a)] fails to predict the oscillating intensity
shown in the BPM simulation [Fig. 4(c)]. In contrast, the
proposed quantum formulism successfully reproduced the os-
cillation. Figure 4(b) is slightly different from Fig. 4(c) because
of the first-order Markov approximation used for G. When
Im�nd �∕jGj � 0, the imaginary parts of these two eigenmodes
are equal to each other. According to Eq. (7), there are no
absorption peaks in the transmission, as shown in Fig. 4(d).

However, absorption peaks can be observed in both the BPM
results [Fig. 4(f )] and the quantum formulism [Fig. 4(e)].
Our studies indicate that a peak in the imaginary parts of
the eigenmodes is a sufficient but not necessary condition to
produce an absorption peak in the transmission spectrum.

The quantum formulism shows various absorption line-
shapes, instead of a fixed lineshape given by conventional for-
mulism. Figure 5 shows that the transmission spectra obtained
from Eq. (6) change with the value of Im�nd �, i.e., Im�n2�.
Figures 5(a) and 5(d) show that the transmission lineshape
is highly sensitive to the propagation length. The transmission
spectrum exhibits frequency comb characteristics at a given
waveguide length, which cannot be obtained by the conven-
tional formulism. In addition, Eq. (7) produces the largest value
of α when Im�nd �∕jGj � 1 [Fig. 3(b)]. However, Fig. 5(e)
shows that Im�nd �∕jGj � 1 does not exhibit the largest ab-
sorption (or highest transmission) at the resonance. For exam-
ple, with L � 6 mm in Fig. 5(d) �Im�nd �∕jGj � 0.25�, the
transmission intensity at the resonance is weaker than that
in Fig. 5(e). These phenomena are unexpected from the
conventional formulism.

The fundamental issue in the conventional formulism is that
it assumes the eigenmodes (n� and n−) are orthogonal. In this
case, these two eigenmodes are decoupled because of symmetry
protection [10]. In general, if the amplitude distribution of
eigenmode n� preserves a C2 symmetry and n− does not, then
n� and n− are decoupled. In this case, the absorption spectra
obtained by Eqs. (6) and (7) are identical. However, the

Fig. 3. Eigenvalues of the coupled system n� (blue) and n− (red) as
functions of the wavelength (λ) with Im�nd �∕jGj of (a) 0.25 (dashed)
and −0.25 (solid), (b) 1 (dashed) and −1 (solid), and (c) 1.5 (dashed)
and −1.5 (solid), respectively.

Fig. 4. Transmission spectra obtained by (a), (d) the conventional
formulism, (b), (e) the quantum formulism, and (c), (f ) the BPM sim-
ulation with Im�nd �∕jGj of (a)–(c) 0.25 and (d)–(f ) 0. Color map
scales are independent.

Fig. 5. Transmission spectrum as a function of the propagation
length with Im�nd �∕jGj of (a) −0.25 and (d) 0.25, (b) −1 and
(e) 1, and (c) −1.5 and (f ) 1.5, respectively.
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eigenmodes of n� and n− are not symmetry protected in a non-
Hermitian Hamiltonian [Eq. (1)] because their eigenmodes are
not orthogonal. Their eigenmodes are not orthogonal if the
value of the mode overlap factor (η) [19] is larger than 0, as
shown in Fig. 6. Their eigenmodes are orthogonal if and only
if Im�nd �∕jGj � 0, i.e., these two cores maintain the same
complex refractive index. Therefore, these two eigenmodes
are coupled to each other if Im�nd �∕jGj ≠ 0. As a result, in
the PT-symmetry-breaking phase, one of the two eigenmodes
decays within one beating cycle, and the interference vanishes.
On the other hand, these two eigenmodes couple to each other
in the PT-symmetry phase during light propagation and
produce the interference.

To further understand the origin of the various transmission
spectra shown in Fig. 5, the phase diagram obtained from n�
and n− is shown in Fig. 7. Depending on the values of λ, G, and
nd , the system may be in a PT-symmetry (blue) or PT-
symmetry-breaking (orange) phase. When the system remains
in the PT-symmetry phase [Figs. 5(a) and 5(d)], the transmission
spectrum varies dramatically along the propagation direction

because of the aforementioned interference between the dom-
inant core and cladding eigenmodes. When the system is
dominated by the PT-symmetry-breaking phase [Figs. 5(c)
and 5(f )], the oscillation in the transmission spectrum vanishes.
The transmission spectrum may undergo a different phase de-
pending on the wavelength. Therefore, both the PT-symmetry
and PT-symmetry-breaking phases can be observed in the
transmission spectrum.

An interesting phenomenon occurs when Im�nd �∕jGj �
−1 [Fig. 5(b)], which indicates a gain in the system. This system
is PT symmetric in the range of 1.5425 to 1.5525 μm, but breaks
the PT-symmetry outside of this wavelength region. As a result,
the transmission spectra in the PT-symmetric region show dra-
matic oscillation until the large amplification overwhelms the
oscillation. When Im�nd �∕jGj � 1.5 [Fig. 5(f)], the system is
mostly in a PT-symmetry-breaking phase over the useful spectral
region. Because the PT-symmetry-breaking phase leads to a
nearly orthogonal basis from the matrix P in Eq. (4), in this case,
the current quantum formulism produces an exponential decay,
similar to that derived from the conventional formulism.

When designing a passive photonic crystal filter [4,5], the
case shown in Fig. 5(d) allows a highly adjustable transmission.
The case shown in Fig. 5(e) provides a narrow bandwidth and a
length-insensitive transmission. For photonic crystal sensors
[6,7,13,14], a large imaginary part near the resonant wave-
length [Fig. 3(b)] should not be the only criterion since the
length of the fiber also plays a critical role in the transmission
[Fig. 5(d)]. The optimal design parameter should have a value
of Im�nd �∕jGj larger than 1 [Fig. 5(e)] to avoid the transmis-
sion oscillation in the PT-symmetry phase.

3. CONCLUSION

We found that the results obtained using the imaginary part of
the eigenmodes to calculate the absorption spectrum of a
coupled waveguide is not consistent with the results from
the BPM simulation. With the quantum formulism presented
in this study, we show that an increase in the imaginary part of
the eigenmode is a sufficient condition, instead of a necessary
condition, for an increased absorption. The PT symmetry of an
optical system plays a critical role in determining the absorption
properties of the coupled system. This work shows that adjust-
ing the length of the waveguide is an effective approach to
optimize the absorption and transmission. Additionally, we
observed several phenomena previously unrecognized by the
conventional formulism.
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